
Mathematical Framework for Skill-Based Number Betting and
Payout Liabilities

Darshan P.
Independent Researcher, Computer Programming Specialist

drshnp@bayesiancorp.com

April 16, 2025

Abstract

We develop a mathematical model for a number betting mechanism where the winning
outcome is determined by minimizing the aggregate wager on a digit. The overall betting
pool is redistributed among winners according to a contribution function that raises the
wager to a power and applies a logistic time-decay weight.

1 Introduction

In traditional betting systems the outcome is random, yet available market information can
be exploited to drive outcomes by means of strategic decisions. Here, we propose a system in
which participants wager on a digit (0 to 9) and the winning digit is chosen as the one with
the minimal aggregate wager. Payouts are redistributed based on a contribution function that
incorporates both the magnitude and timing of each wager. This approach draws on existing
work in prediction markets [1, 2, 3] and techniques used to extract risk-neutral densities from
option prices [4], with potential applications in decision support [5].

2 Mathematical formulation

2.1 Bet Structure

Let each participant choose a digit n ∈ {0, 1, . . . , 9}. Each bet i is characterized by:

• A wager Ai > 0,

• A timestamp ti with ti ∈ [0, T], where T is the betting round duration.

For a given digit n, denote by Bn the set of bets placed on n.

2.2 Winning digits selection

The total wager on digit n is defined as:

S(n) =
∑
i∈Bn

Ai.

1

The winning digit n∗ is then:
n∗ = arg min

n∈{0,...,9}
S(n).

This criterion selects the digit with the least total investment, effectively incentivizing strategic
avoidance of popular choices.

2.3 Contribution function

For a bet i on the winning digit n∗, the contribution is defined by:

Ci = Aγ
i W (ti),

where:

• γ > 1 is a parameter that magnifies differences in wager sizes,

• W (ti) is a logistic time-decay function:

W (ti) =
1

1 + e
α
(

ti
T
−0.5

) ,
with α > 0 determining the sensitivity to timing.

2.4 Payout allocation

The total betting pool is:
Pool =

∑
j∈{0,...,9}

∑
i∈Bj

Ai.

For bets on the winning digit, the payout Pi is allocated proportionally:

Pi =
Ci∑

j∈W
Cj

× Pool,

where W is the set of bets on n∗.

2.5 Return computation

The net profit for a winning bet is:

Net Profiti = Pi −Ai,

and the return percentage is given by:

Return%i =

(
Net Profiti

Ai

)
× 100.

2.6 Python random implementation

2

1 import random
2 import math
3 import pandas as pd
4

5 # Simulation Parameters
6 num_bets = 700
7 num_numbers = 10
8 round_duration = 10000 # T
9 gamma = 1.3 # Amount scaling

10 alpha = 5 # Time weight steepness for logistic
11 num_users = 200
12

13 # Step 1: Generate Random Bets
14 bets = []
15 for i in range(num_bets):
16 bet = {
17 "bet_id": i,
18 "user": f"User_{random.randint(0, num_users - 1)}",
19 "bet_number": random.randint(0, num_numbers - 1),
20 "amount": random.uniform(5, 100),
21 "time": random.uniform(0, round_duration)
22 }
23 bets.append(bet)
24

25 df_bets = pd.DataFrame(bets)
26 print("All Bets in This Round:")
27 print(df_bets)
28

29 # Step 2: Determine Winning Number
30 grouped = df_bets.groupby("bet_number").agg(
31 total_amount =("amount", "sum"),
32 count=("amount", "count")
33).reset_index ()
34

35 print("\nTotal Bets by Number (sorted by total amount):")
36 print(grouped.sort_values("total_amount"))
37

38 winning_number_row = grouped.loc[grouped["total_amount"]. idxmin ()]
39 winning_number = winning_number_row["bet_number"]
40 print("\nWinning Bet Number (Least Total Bet Amount):", winning_number)
41

42 # Step 3: Compute Contributions
43 winning_bets = [bet for bet in bets if bet["bet_number"] == winning_number]
44

45 for bet in winning_bets:
46 t = bet["time"]
47 normalized_t = t / round_duration
48 time_weight = 1 / (1 + math.exp(alpha * (normalized_t - 0.5)))
49 contribution = (bet["amount"] ** gamma) * time_weight
50 bet["normalized_time"] = normalized_t
51 bet["time_weight"] = time_weight

3

52 bet["contribution"] = contribution
53

54 total_contribution = sum(bet["contribution"] for bet in winning_bets)
55 pool = sum(bet["amount"] for bet in bets)
56

57 for bet in winning_bets:
58 bet["payout_share"] = (bet["contribution"] / total_contribution) * pool if

total_contribution > 0 else 0
59

60 df_winning = pd.DataFrame(winning_bets)
61 print("\nWinning Bets Details (with Logistic Time Weight):")
62 print(df_winning [[
63 "bet_id", "user", "bet_number", "amount", "time", "normalized_time",
64 "time_weight", "contribution", "payout_share"
65]])
66

67 # Step 4: Aggregate by User
68 user_summary = df_winning.groupby("user").agg(
69 total_bets =("bet_id", "count"),
70 total_amount_bet =("amount", "sum"),
71 total_contribution =("contribution", "sum"),
72 total_payout =("payout_share", "sum")
73).reset_index ()
74

75 user_summary["net_profit"] = user_summary["total_payout"] - user_summary["
total_amount_bet"]

76 user_summary["return_percentage"] = user_summary["net_profit"] / user_summary["
total_amount_bet"] * 100

77

78 print("\nTotal Payout Summary by User (with Net Profit):")
79 print(user_summary)

Listing 1: Python Random Results Payouts

3 Simulation and parameter analysis

To validate the model, we simulate multiple betting rounds:

1. Generate bets for digits n ∈ {0, . . . , 9} with Ai drawn from a specified distribution and
timestamps ti uniformly sampled from [0, T].

2. Compute S(n) and determine the winning digit n∗.

3. For bets on n∗, calculate contributions Ci and determine individual payouts Pi.

4 From randomized script to structured simulation

The Python code presented above is not intended as a full simulation of real-world betting
behavior. It generates random wagers and computes payouts solely to illustrate how the con-
tribution and payout functions operate. It does not model strategic decision–making based on

4

real-time information, nor does it account for fees, taxes, or coordinated actions. To move from a
“random-reward” script toward a more realistic simulation, we suggest the following extensions:

1. Early, uninformed bettors. Introduce a group of agents who place initial bets at random,
reflecting users without access to aggregate wager data. These agents benefit from higher
time-decay weights but make uninformed choices.

2. Strategic counter-bettors. A second group of agents, implemented using multiprocessing,
observe partial wager data and try to identify less crowded digits. Some may place decoy
bets to influence crowding perception. Returns should account for platform fees and taxes.

3. Last-minute risk-takers. Model a third group that waits until late in the round to place
larger wagers, exploiting complete information at the cost of reduced time-decay weight.
Their strategy trades higher potential payout against greater risk of capital loss.

4. Multi-account and fear-driven behavior. Allow agents to place multiple bets (simulating
multi-account users) and to react to losses with increased urgency or fear, thereby capturing
regret aversion and herding under stress.

These enhancements would better reflect the layered strategic interactions and behavioral biases
present in an operational system.

Preliminary results indicate:

• Elevated values of γ disproportionately emphasize larger wagers, which can skew outcome
distributions when participants act independently.

• The logistic time-decay function W (ti) moderates timing effects, rewarding early wagers
and reducing incentives for last-minute manipulation.

• The strategic avoidance behavior mirrors recursive reasoning in Keynesian beauty contests:
participants attempt to predict which digit will be least chosen by others [6].

5 Discussion

The proposed method deterministically selects outcomes based on aggregate betting behavior,
bridging analysis and skill over random guesses. This approach aligns with established prediction
market techniques [1, 2, 3] and with methods for extracting risk-neutral densities from option
prices [4].

Keynesian beauty contest logic is evident: bettors base their choices on expectations of
others’ bets rather than on intrinsic digit value [6]. The logistic time-decay function introduces an
additional strategic dimension by weighting early bets more heavily, which shapes participants’
anticipatory reasoning.

In practice, participant decisions often reflect behavioral patterns that deviate from purely
strategic reasoning. For example, loss aversion may lead users to avoid placing large bets, even
when the contribution function (γ > 1) favors higher stakes. Anchoring effects may occur when
early bets on certain digits influence subsequent choices, regardless of their actual strategic

5

value. Additionally, herding behavior can emerge when players imitate perceived trends, even
in a setup that rewards choosing less popular options. These behaviors align with bounded
rationality models from behavioral economics [7].

6 Conclusion

We have presented a mathematical framework for a number betting system where outcomes are
driven by the collective strategic behavior of participants. Through formal definitions, simula-
tion, and parameter analysis, we show how the system shifts the paradigm from random chance
to analysis-based performance. Future work will include empirical validation and refinement of
parameters for deployment in real-world settings.

References

[1] Wolfers, J., & Zitzewitz, E. (2004). Prediction Markets. Journal of Economic Perspectives,
18(2), 107–126.

[2] Berg, J., Nelson, F., & Rietz, T. A. (2008). Prediction Market Accuracy in the Long Run.
International Journal of Forecasting, 24(3), 465–480.

[3] Berg, J., Forsythe, R., Nelson, F., & Rietz, T. (2007). Chapter 80: Results from a Dozen
Years of Election Futures Markets Research. ScienceDirect. Available at: https://www.

sciencedirect.com/science/article/abs/pii/S1574072207000807.

[4] Aït-Sahalia, Y., Wang, Y., & Yared, F. (2000). Do Option Markets Correctly Price the
Probabilities of Movement of the Underlying Asset? ScienceDirect. Available at: https:

//www.sciencedirect.com/science/article/abs/pii/S0304407600000919.

[5] Prediction Markets as Decision Support Systems. (n.d.). Springer. Available at: https:

//link.springer.com/article/10.1023/A:1022002107255.

[6] Keynes, J. M. (1936). The General Theory of Employment, Interest and Money. Harcourt,
Brace.

[7] Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under
Risk. Econometrica, 47(2), 263–292.

6

https://www.sciencedirect.com/science/article/abs/pii/S1574072207000807
https://www.sciencedirect.com/science/article/abs/pii/S1574072207000807
https://www.sciencedirect.com/science/article/abs/pii/S0304407600000919
https://www.sciencedirect.com/science/article/abs/pii/S0304407600000919
https://link.springer.com/article/10.1023/A:1022002107255
https://link.springer.com/article/10.1023/A:1022002107255

	Introduction
	Mathematical formulation
	Bet Structure
	Winning digits selection
	Contribution function
	Payout allocation
	Return computation
	Python random implementation

	Simulation and parameter analysis
	From randomized script to structured simulation
	Discussion
	Conclusion

