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Abstract

This note presents an alternative proof of the Fundamental Theorem of Algebra. Specif-
ically, we show that the degree of an irreducible polynomial in R[X] is either 1 or 2. The
argument then extends naturally to C[X], where every irreducible polynomial must have
degree 1. For background on classical approaches to the theorem, see [1, 2].

1 Proof setup

Let n > 1 be an integer and let P ∈ R[X] be an irreducible polynomial of degree n. We claim
that n = 2. Denote by 〈P 〉 the ideal generated by P in R[X]. Because P is irreducible, the
quotient ring R[X]/〈P 〉 is a field. Define

ψ : Rn −→ R[X]/〈P 〉, (a0, . . . , an−1) 7−→ a0 + a1X + · · ·+ an−1X
n−1 + 〈P 〉.

Then ψ is a group isomorphism from (Rn,+) onto (R[X]/〈P 〉,+). Via ψ we transport the
field structure of the quotient to Rn: addition coincides with the usual vector addition, and we
denote the product of x, y ∈ Rn by x · y. The multiplicative identity is written 1. Because the
transported product is bilinear, the map Rn × Rn → Rn, (x, y) 7→ x · y is continuous.

2 Proof

Fix any norm ‖·‖ on the underlying real vector space Rn such that ‖1‖ = 1, and set

‖x‖ = sup
∥y∥=1

|x · y|, x ∈ Rn.

That is, ‖x‖ is the operator norm of the endomorphism y 7→ x · y. It satisfies ‖1‖ = 1 and
‖x · y‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ Rn.
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are absolutely and locally uniformly convergent with respect to this norm; the first on all of Rn

and the second on the open ball {x ∈ Rn : ‖x − 1‖ < 1}. We write e(x) and ln(x) for their
respective sums. Because the product on Rn is commutative, one checks

e(x+ y) = e(x) · e(y) (x, y ∈ Rn). (1)

Moreover e(x) 6= 0 since e(x) · e(−x) = e(0) = 1. Thus

e : (Rn,+) −→ (Rn \ {0}, ·)

is a continuous group homomorphism.
Exactly as in the matrix case (see [3, Sec. 2.1] or [4, Sec. 4B]), one shows that

e
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(
e(x)

)
= x (2)

whenever ‖x− 1‖ ≤ 1.
From (1) we deduce that if V is any neighbourhood of 0, then e(V ) is a neighbourhood of 1;

hence e is an open mapping. Consequently e is surjective: if G = e(Rn), then G is an open
subgroup of Rn \ {0}, and the complement of G is also open; because Rn \ {0} is connected,
that complement must be empty.

It follows from (2) that ker(e) is discrete, and it is well known (see [4, Chap. 7, Sec. 1.1] or
[2, Sec. 1.12]) that, unless ker(e) = {0}, there exist linearly independent vectors v1, . . . , vm ∈ Rn

(m ≥ 1) such that ker(e) =
⊕m

k=1 Zvk. Because e is open, it induces a homeomorphism from
Rn/ ker(e)which is homeomorphic to (S1)m×Rn−monto Rn \ {0}. But for n ≥ 2 the punctured
space Rn \ {0} is simply connected, whereas (S1)m × Rn−m is not simply connected when
1 ≤ m ≤ n. To avoid a contradiction we must have ker(e) = {0}.

Hence Rn \ {0} would be homeomorphic to Rn, which is impossible: in Rn every compact
set K is contained in another compact set whose complement is connected, whereas this fails
in Rn \ {0} (take K = S n−1, the unit sphere). Therefore n = 2, completing the proof.
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